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ABSTRACT

Progressive techniques encompass iterative and adaptive approaches that incrementally 
enhance and optimize data processing by iteratively modifying the analysis process, resulting 
in improved efficiency and precision of outcomes. These techniques contain a range of 
components, such as data sampling, feature selection, and learning algorithms. This study 
proposes the integration of an Artificial Neural Network (ANN) with a Progressive Learning 
Model (PLM) to enhance the efficacy of learning from large-scale datasets. The SMOTE 
and Pearson Correlation Coefficient (PCC) methods are commonly employed in imbalanced 
dataset handling and feature selection. The utilization of progressive weight updating is a 
notable strategy for improving performance optimization in neural network models. This 
approach involves the incremental modification of the network’s progressive weights 
during the training phase rather than relying on gradient values. The proposed method 
gradually obtains the localization of discriminative data by incorporating information 
from local details into the overall global structure, effectively reducing the training time by 
iteratively updating the weights. The model has been examined using two distinct datasets: 
the Poker hand and the Higgs. The performance of the suggested method is compared 
with that of classification algorithms: Population and Global Search Improved Squirrel 
Search Algorithm (PGS-ISSA) and Adaptive E-Bat (AEB). The convergence of Poker’s 
is achieved after 50 epochs with ANN-PLM; however, without PLM, it takes 65 epochs. 

Similarly, with the Higgs, convergence is 
achieved after 25 epochs with PLM and 40 
without PLM.

Keywords: Artificial neural network, big data 
classification, data imbalance, Pearson correlation 
coefficient-based feature selection, progressive 
learning model, weight updating
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INTRODUCTION

Information technologies have achieved extraordinary growth in data. Large amounts 
of data from various applications are combined as big data, which has resulted in the 
complexity of dealing with big data (Wang et al., 2021) and enhancing convergence. Big 
data is either structured or unstructured. The number of data created is represented as 
volume (Dubey et al., 2021), data’s creation speed is defined as velocity and structured and 
unstructured characteristics are represented as data’s variety (Jain et al., 2022; Kantapalli 
& Markapudi, 2023). Big data gathers huge attention in numerous areas, such as electronic 
commerce, online social networks, the Internet of Things, bioinformatics, and e-health 
because those applications have progressively achieved an enormous amount of raw data 
(Brahmane & Krishna, 2021; Hassib et al., 2020; Park et al., 2021; Xing & Bei, 2020).

Big data applications have revolutionized various industries by providing unprecedented 
opportunities to extract valuable insights from massive and complex datasets. However, 
the volume and complexity of big data often pose challenges in terms of response time, 
as processing such large-scale data can be time-consuming and resource-intensive. Many 
techniques have emerged as promising approaches to reduce response time and improve 
the efficiency of big data applications in addressing these challenges,

Data preparation techniques can reduce processing time in large-scale data applications. 
Preprocessing refers to a set of operations that increase the quality and usability of data, 
such as data cleansing, transformation, and integration. Preprocessing processes that are 
executed efficiently can decrease unnecessary computational overhead, resulting in faster 
processing time. Sampling approaches are an alternate method for dealing with the issue 
of time limits. Sampling is a statistical strategy in which a representative subset of data 
is chosen for examination rather than the complete dataset. It is feasible to achieve large 
savings in computing complexity and processing time while receiving important insights 
using a smaller sample size. It is also critical to ensure that the sampling approach maintains 
the statistical traits and characteristics of the initial dataset. In machine learning, data 
classification is an extensive operation that involves understanding the targeted data to 
predict the class of unseen data (Banchhor & Srinivasu, 2021). The existence of prominent 
redundancy of information in data is required to be noted while examining the openly 
accessible tabular big data issues because these redundant features cause an impact on 
storage and scalability (Basgall et al., 2020). The training of an efficient learning system 
is difficult in data mining when the given class distribution is imbalanced in a training data 
set. Moreover, the classification of rare objects is more complex than that of general objects 
in most data mining approaches (Abhilasha & Naidu, 2022). The imbalance (Juez-Gil et 
al., 2021) decreases the classifier’s generalization abilities and makes it inefficient for 
minority classes (Sleeman & Krawczyk, 2021). Therefore, feature selection is combined 
with progressive learning to improve big data classification in this work. Feature selection 
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is choosing appropriate features and eliminating redundant features from the dataset. 
Moreover, preserving the strong features makes the predictive model highly discriminative, 
which enhances performance (Al-Thanoon et al., 2021; BenSaid & Alimi, 2021).

The timely completion of data processing and machine learning model training 
is critical for generating efficient and timely results. Numerous approaches have been 
proposed in scholarly publications, including feature selection, dimensionality reduction, 
ensemble learning, approximation, transfer learning, progressive sampling algorithms, 
mini-batch learning, and online learning to overcome this barrier. Using these strategies, 
researchers can effectively reduce training time while maintaining acceptable levels of 
precision, allowing for faster and more effective application of machine learning models.

The use of iterative and incremental strategies in model construction and data 
analysis distinguishes progressive approaches in machine learning. These strategies aim 
to gradually improve the accuracy of machine learning models by incorporating new data 
and modifying model parameters. Researchers and data scientists can iteratively improve 
the precision and efficacy of their models by implementing progressive methodologies. 
Progressive techniques have been developed to decrease the temporal complexity of 
training time, resulting in faster learning. This advancement is particularly significant 
for big data applications. However, it is important to note that these techniques also 
have certain drawbacks. Progressive networks present a model framework that enables 
transfer through lateral connections to characteristics of previously acquired columns. This 
mechanism mitigates the issue of catastrophic forgetting by establishing a distinct neural 
network, referred to as a column, for each task being performed. During training, the system 
maintains a reservoir of pre-trained models and leverages lateral connections from existing 
models to extract valuable characteristics for novel tasks. The network’s last layer, along 
with its associated weights, increases in size as each new class is introduced. All these 
models necessitate additional overhead in establishing new connections and incorporating 
additional columns to retain the acquired data. The trade-off involves an increase in model 
complexity, which refers to including a greater number of parameters to be trained for 
each extra column. If a new class is introduced, it becomes necessary to retrain the entire 
model. The implementation of progressive learning paradigms necessitates a fundamental 
alteration in the arrangement of layers and neurons, augmenting the process’s intricacy.

Progressive learning is a concept in artificial neural networks (ANNs) that refers 
to incrementally improving a neural network’s performance over time. There are many 
progressive learning techniques for ANN and CNN. The techniques differ in the way the 
network carries out the learning. Recent literature has focused on developing progressive 
learning algorithms that are more efficient, robust, and flexible. Some approaches include 
incremental, transfer, lifelong, and meta-learning. Incremental learning methods gradually 
learn new tasks while preserving previously learned knowledge. Transfer learning 
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approaches leverage knowledge from previously learned tasks to improve learning on 
new tasks. Lifelong learning methods learn continuously over an extended period while 
maintaining a growing knowledge base. Meta-learning methods aim to learn how to learn, 
facilitating faster and more efficient learning.

This research uses the ANN with PLM to perform big data classification without 
changing the overall structure of the ANN and maintaining the process of traditional ANN. 
In this proposed system, the incremental learning of weights according to the batches of 
data is termed a progressive learning model. This research highlights feature selection, 
data imbalance, and progressive learning methods, which collectively reduce the training 
time of neural networks.

The contributions of this work are concise as follows―the ANN-PLM approach 
is used to localize discriminative data from local details to the global structure, which 
is further used to enhance classification by combining the output of the last multiple 
stages and progressively updating the probabilities of the weight. PLM helps the neural 
network learn from the data effectively and efficiently, leading to better accuracy and 
faster training times. 

The possible research questions that arise and which have been addressed in the paper are:
•	 RQ1: How does combining a Progressive Learning Model (PLM) with an Artificial 

Neural Network (ANN) impact learning effectiveness from extensive datasets?
•	 RQ2: What is the specific impact of progressive weight updating on reducing the 

training time of the ANN-PLM model, and how does this compare to traditional 
gradient-based weight updating methods?

•	 RQ3: What is the comparative performance of the ANN-PLM model about 
traditional classification algorithms like Population and Global Search improved 
Squirrel search Algorithm (PGS-ISSA) and Adaptive E-Bat (AEB)?

RELATED WORK

We discuss further the related work on big data classification and progressive learning, 
along with its advantages and limitations.

Du et al. (2022) developed a progressive training approach that operated in a zooming-
out manner to perform fine-grained visual classification. This progressive training was 
executed in various steps to accomplish the feature learning and acquire the essential 
complementary characteristics between various granularities. The Category-Consistent 
Block Convolution (CCBC) was proposed, which integrated the operation of block 
convolution with the feature Category-Consistency Constraint (CCC). This CCC was used 
to overcome the overfitting issue and confirmed that the acquired multi-granularity regions 
are expressive and related to classes. The classification of developed progressive training 
mainly depends on the block numbers of convolutional layers.  
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Rebuffi et al. (2017) proposed a method for incremental learning that addresses the 
problem of catastrophic forgetting. It uses a combination of exemplar-based rehearsal and 
feature expansion to learn new tasks while preserving old ones. All these methods have 
the overhead of storing the old, learned data.

A newly developed learning method that could help learn new classes while keeping 
information from older courses was proposed by Venkatesan and Er (2016). The number 
of classes did not bind it. The neural network structure is automatically reconstructed 
by enabling new neurons and interconnections when a new class that is not native to the 
knowledge obtained so far is encountered, and the parameters are computed so that the 
knowledge learned thus far is kept. This approach is suited for real-world applications 
where it is necessary to learn online using real-time data and where the number of classes 
is frequently uncertain. The consistency and intricacy of the progressive learning method 
are studied. The proposed method used the ELM technique, where the output layer structure 
changes every time a new class is introduced.

Chatterjee et al. (2017) created an approach for systematically creating a large artificial 
neural network employing a progression property in this paper. The systematic design handles 
network size selection and parameter regularization. A network’s number of nodes and layers 
grows over time to constantly lower a reasonable cost. Each layer is optimized individually, 
with optimal parameters learned via convex optimization. Certain weight matrices’ random 
occurrences reduced the number of parameters to learn. However, instead of utilizing a back 
propagation-based learning strategy, they applied a nonlinear modification at each layer.

In this Progressive method, a deep network is developed unsupervised by PSL, a 
progressive stage-wise learning framework for unsupervised visual representation learning 
(Li et al., 2021). Early learning stages concentrate on simple tasks, whereas later learning 
stages are guided to glean deeper knowledge from more challenging tasks. They have used 
the gradient flow concept from one step to the next.

The suggested network architecture prevents prior knowledge from being forgotten 
and allows previously learned knowledge to be leveraged through lateral connections to 
previously learned classes and their attributes (Siddiqui & Park, 2021). Furthermore, the 
suggested technique is scalable and does not necessitate structural changes to the network 
trained on the old task; both are critical qualities in embedded systems, but this proposed 
method requires a pool of pre-trained models. Progressive Neural Networks (ProgNN) is 
a method for incremental learning (Rusu et al., 2016). ProgNN adds new neural networks 
to the architecture to solve new tasks while retaining knowledge from previous tasks. Each 
new network is trained on the new task and connected to the previous networks, forming 
a chain of expertise.

This work is based on a cross-entropy loss to learn the new classes and a distillation 
measure to retain the knowledge from the old classes (Castro et al., 2018). It requires extra 
memory space to store the old class data.
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Movassagh et al. (2021) suggest a Hierarchical Convolutional Neural Network (HCNN) 
for image classification in this paper, which consists of numerous subnetworks utilized to 
categorize images progressively. The images with the revised weights are utilized to train the 
following sub-networks. If the prediction confidences in a sub-network are above a certain 
threshold, the results are output immediately. Otherwise, the following sub-networks must 
acquire deeper visual properties sequentially until a reliable image classification result or 
the last sub-network is reached. Otherwise, the following sub-networks must acquire deeper 
visual properties one after the other until a reliable image classification result or the last 
sub-network is reached. The model’s accuracy is relatively high; however, it necessitates 
the maintenance of subnetworks, which adds overhead. All the research on progressive 
learning depicts the stupendous effort to retain knowledge, creating an overhead in time 
and memory. 

The remaining portion of the associated study is based on data imbalance and 
classification techniques used for ANN. Smote plays an important role in solving the 
issues related to data imbalance. Sleeman and Krawczyk (2021) presented Apache 
Spark, including a SMOTE, to overcome spatial restrictions in big data analytics. The 
developed multi-class sampling approaches, i.e., SMOTE, under- and oversampling, 
were augmented with informative sampling and partitioning for SMOTE in Spark nodes. 
Therefore, clustering-based data partitioning was used to avoid the issue of the absence 
of spatial coherence between the instances from each class because of the random data 
splitting between the nodes. The probability of generating erroneous artificial instances was 
minimized by using the SMOTE in Spark. For an effective classification, feature selection 
was required to be considered for selecting the optimal features.

Ali and Balakrishnan (2021) developed the Population and Global Search Improved 
Squirrel Search Algorithm (PGS-ISSA) for feature selection. The developed PGS-ISSA 
was used to overcome the issue of local optimum and minimize the convergence rate in 
the conventional squirrel search algorithm. The main modification of this PGS-ISSA was 
the development of chaos theory to improve the population initialization, which is used to 
maximize the search space. The optimal features were chosen according to the minimum 
error rate used in the fitness to enhance the classification. The classification’s SVM does 
not perform better when processed with larger datasets. 

Mujeeb et al. (2021) presented the optimization-based MapReduce framework (MRF) 
for dealing with imbalanced data using the deep learning approach in classification. An 
adaptive E-Bat (AEB) approach was used to select the feature using the mappers in the 
MRF. The developed AEB integrated the Exponential Weighted Moving Average (EWMA) 
and the Bat algorithm (BA). The AEB was used to modify the update expression of E-Bat 
by creating an adaptive one for handling real-time data. The Deep Belief Network was 
used to classify the features according to the chosen ones. The developed AEB required 
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many training data to provide better classification accuracy. In most of the work mentioned 
above, the categorization of the generated progressive training was mostly based on the 
convolutional layer block counts, and a large amount of training data was needed.

Zhou et al. (2021) presented the region proposal and progressive learning, namely 
PRP-Net, for recognizing vegetable disease under a complex background. The attention 
proposal subnetwork, APN, was developed to acquire the disease’s key regions from 
the background. The developed APN provided highly discriminative data for extracting 
the features. Next, these acquired regions were integrated with progressive learning to 
support the model in concentrating on fine-grained areas to obtain multiscale features. 
The channel attention mechanism was used to estimate the features for classification. 
The database’s knowledge information was required to be enhanced to assist the training 
process; only then can it process the data from various times and planes. Hassanat et al. 
(2021) developed a supervised machine learning Magnetic Force (MF) classifier for big 
data classification according to iron-filling attraction to magnetic force. Here, the class was 
denoted by certain magnets, and iron filings denoted the unknown data points required to 
be categorized in big data classification. The inverse square law was applied to computing 
each class’s force over each point in feature space. The developed MF was sensitive to the 
information skewed by the class. 

MATERIALS AND METHODS

With a progressive learning model, ANN is developed to improve big data classification 
in this research. The important processes of the proposed method are (1) data acquisition, 
(2) class imbalance processing using SMOTE, (3) feature selection using PCC, and (4) 
classification using ANN-PLM. Here, the PCC is used to choose the optimal features 
from the feature vector, which leads to improving the classification. The localization of 
discriminative data from local details to the global structure is used to perform an effective 
classification. Figure 1 shows the block diagram of the proposed method.

Figure 1. Block diagram of the proposed method
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Dataset Acquisition 

In this research, two datasets, the Poker hand dataset and the Higgs dataset, are taken from 
the UCI and Kaggle machine repository. The links for the dataset are: https://archive.ics.
uci.edu/ml/datasets/Poker+Hand; and https://archive.ics.uci.edu/ml/datasets/HIGGS.

Few research methodologies have used these datasets, considering their voluminous 
structure, which consumes much processing time. The proposed method experimented with 
the PLM training method on this dataset to achieve considerably good results.

The Poker hand dataset includes the 1025010 instances and 11 attributes with 
categorical and integer features. The nature of this Poker hand dataset is multivariate.

Poker is a 5-card poker hand used in each instance of the dataset, with each card having 
two attributes (suite and rank) and the poker-hand label. It is an all-categorical trait and 
highly imbalanced dataset, with the first two classes representing 90% of the samples in both 
the training and testing sets. In the Higgs dataset, the number of attributes and instances 
are 28 and 1100000, respectively. Monté Carlo simulations were used to generate the data. 
The first column is the class label (s for the signal for background), followed by the 28 
features (21 low-level features, then 7 high-level features The first 21 features (columns 
2–22) are kinematic attributes measured by the accelerator’s particle detectors. The final 
seven features are functions of the first 21 features. These are high-level features developed 
by physicists to aid in distinguishing between the two groups.

Class Imbalance Processing Using SMOTE

The data acquired from the datasets are processed using the synthetic minority over-
sampling technique (SMOTE) approach to avoid issues related to imbalanced data. 
SMOTE is a classical oversampling in that the number of samples of the minority class 
is maximized in proportion to the majority class. The main principle of SMOTE is to 
include new data at random places among the minority data and its neighbors. Initially, 
the K-nearest neighbors are investigated using minority-class data. Equation 1 shows the 
interpolation expression of SMOTE.

𝐷𝐷𝑖𝑖′ = 𝐷𝐷 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × (𝑁𝑁𝑁𝑁𝑖𝑖 − 𝐷𝐷)           						      [1]

The data sample of minority class samples is denoted as D; the random number 
between [0,1] is denoted as rand(0,1); the the nearest neighbors are denoted as NNi, and 
the interpolated sample is denoted as. D’i.

Figure 2 shows the imbalance property of both datasets, whereas Figure 3 depicts the 
class distribution before and after applying SMOTE in the Higgs Dataset.

The Higgs dataset contained imbalanced data, with the background class representing 
almost 90% of data and the signal class around 50% after the application of SMOTE. 
Oversampling equally distributed the classes.
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Feature Selection Using Pearson Correlation Coefficient

Pearson Correlation Coefficient (PCC) is a linear dependence degree measured between 
the two random features, i.e., real-valued vectors obtained from the dataset. PCC of two 
variables, D’1 and D’2, is generally defined as the ratio between the covariance (COV) of 
the two variables and the standard deviation’s product expressed in Equation 2.

𝜌𝜌𝐷𝐷1
′ ,𝐷𝐷2

′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐷𝐷1
′ ,𝐷𝐷2

′ )
𝜎𝜎𝐷𝐷1

′ 𝜎𝜎𝐷𝐷2
′

                                              								       [2]

Where the PCC is denoted as 𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′  

𝜎𝜎𝐷𝐷1
′  

𝜎𝜎𝐷𝐷2
′  

; standard deviations of D’1 and D’2 are denoted as 

𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′  

𝜎𝜎𝐷𝐷1
′  

𝜎𝜎𝐷𝐷2
′  

 
and 

𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′  

𝜎𝜎𝐷𝐷1
′  

𝜎𝜎𝐷𝐷2
′  ; Hence, the relevant features are selected based on derived PCC, and it is processed 

further in the ANN with PLM for big data classification. The coefficient correlation value 
less than 0.5 was not considered for the training dataset.

Figure 3. Distribution of classes in Higgs dataset: (a)Before; and (b) after applying SMOTE

Figure 2. Depiction of total imbalance distribution of classes in: (a) Poker dataset; and (b) Higgs dataset 
before applying SMOTE
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Classification Using ANN-PLM

PLM Process

The training process, which is performed using PLM, starts from a lower stage and 
progressively updates the learning weights of all stages to perform the overall training. 
The phenomena considered in progressive learning is the computation of progressive 
weight based on cross-entropy loss. This cumulative progressive weight is updated to 
the previous layer via backpropagation. In normal backpropagation, the gradient value is 
updated as feedback to the previous layer, but ANN-PLM updates the progressive weight 
to the previous layer. This progressive weight-based feedback helps to achieve trained 
layers with optimal performance in an earlier stage compared to the conventional ANN. The 
PLM is required to obtain the discriminative data from local details to overcome the lower 
stage’s restriction of representation capacity and receptive field. Here, the representation 
capacity denotes the data training capacity of neurons in an ANN layer, and the receptive 
field represents the response attainable from the neurons according to the previous stage 
output. The ANN steadily discovers discriminative data from local (i.e., layer) details 
to the global structure along with the increment of stages, where the global structure is 
cumulative of all hidden layers. 

In general, the ANN output is the trained weights of the hidden layers, whereas the 
ANN-PLM’s output is the weight of the global structure. The changes in the local layer’s 
weight create an impact on the adjacent layers. Consequently, the global structure varies 
as a result of progressive learning. 

Steps in the PLM Process

The flowchart of the proposed system is shown in Figure 4.
The main objective is to develop progressive training to reduce classification loss in 
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𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

 The classification 
module 

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑆𝑆𝑙𝑙  

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)  

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

 is defined for predicting the probability distribution, whereas 

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑆𝑆𝑙𝑙  

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)  

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

 has 
exponential linear units, batch norm, and two fully connected stages. The probability 
distribution 

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑆𝑆𝑙𝑙  

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)  

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

 is obtained by giving Vl as input to the classification.
The cross-entropy loss LCE expressed in Equation 3 is adopted in PLM for reducing 

the distance among the label of ground truth y and distribution of prediction probability yl 

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑆𝑆𝑙𝑙  

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)  

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 						      [3]

Where the number of categories is represented as m; the probability that the input X of 
the category i and stage l is represented as 𝑦𝑦𝑙𝑙𝑖𝑖  .The outputs of multiple previous stages are 
combined, as shown in Equation 4, to enhance the classification.
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𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑉𝑉𝐿𝐿−𝑆𝑆+1, … ,𝑉𝑉𝐿𝐿−1,𝑉𝑉𝐿𝐿] 					     [4]

Where the amount of the last stages is represented as S, and it is followed by the 
classification,  𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

, where H is an output. Subsequently, the PLM 
is optimized using the cross-entropy loss, expressed in Equation 5. 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

					     [5]

The parameters used in the current estimation are optimized and are updated in the 
previous step to help every stage in the PLM operate together in the ANN. The probability 
distribution of discovery, such as 

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

 and 

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

, is obtained in PLM. The outcome of PLM 
is derived as Equation 6 when it only uses the 

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

 in the discovery.

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 

							       [6]

The identifications of each stage are complementary and unique; therefore, all outcomes 
are integrated to obtain the final prediction, as shown in Equation 7, which is modified 
from Equation 6.

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑚𝑚

𝑖𝑖=1

 

𝑦𝑦𝑙𝑙  

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 					     [7]

Figure 4. Flowchart of proposed ANN-PLM method
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Pseudocode for ANN-PLM with an Experimental Setup

Input: Initialize the hyperparameters of the network such as learning rate =0.01, hidden 
layers =10, Number of neurons = 30, Maximum number of epochs =100, batch size =8, 
Test ratio = 20%, Train ratio=80%and Activation function = Sigmoid.

• m = number of classes  
• 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = convolution block  
• 𝑉𝑉𝑙𝑙  = vector  
• 𝐿𝐿𝐶𝐶𝐶𝐶 = cross loss entropy 
• log = the natural log 
• y = ground truth label for i-th sample 
• 𝑦𝑦𝑙𝑙  = predicted label for i-th sample 
• 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = outputs of multiple previous stages 
• 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = predicted labels for the concatenated output 
• ∆𝑦𝑦𝑖𝑖 = new class sample 
Preprocess the input data for classification.
	 For epochs 1, N do # N defines the number of epochs
	 With probability p with random learning weight
	 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) 

                 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) 

∆𝑦𝑦𝑖𝑖  

𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −�(𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

(𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) 

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �
𝑚𝑚

𝑖𝑖=1

 

 for each class of data
𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) (𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚

𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  / 

 // Calculate loss for each batch of training data 
as in Equation 4.

	 Calculate 

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  / 

 for each class
	 Repeat
		  Calculate 

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  / 

			 

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  / 

		       If 

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  / 

 // Check, new class data arrived. 

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1    //Calculate loss for each batch of training data as in Equation 4. 

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class 

 Repeat 

  Calculate ∆𝑦𝑦𝑖𝑖  

   𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1  

       If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)  // Check, new class data arrived.  

                                              𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1  /  // Update learning 

weights and back-propagate the progressive weight
//Find the loss probabilities
Else continue
End if
End For
Evaluate prediction for test data in the trained model
Compute performance measures.
Output: Classified information of big data.

The input data must be pre-processed before classification during the initialized 
training phase. The learning weights are randomly initialized, and the training data loss 
in every batch is calculated using Equation 4. For several epochs, this process is repeated 
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for every class, and the loss of the training data is evaluated and checked for new class 
data. If new class data arrives to calculate the new learning weights, the learning weights 
are updated using Equation 6. Else, continue the epochs. The trained model is evaluated 
based on the test data prediction, and the performance measure is calculated, resulting in 
big data classification.

RESULTS AND DISCUSSION

The design and simulation of the proposed method are performed in Python 3.7. The system 
configurations used to run this big data classification are an i5 processor, 16 GB RAM, 
and 6 GB GPU. The datasets used to analyze the big data classification using the proposed 
method are the Poker hand and the Higgs datasets. Of these datasets, 80% were taken for 
training and 20% for testing. The performance metrics such as accuracy, precision, recall, 
F-measure, and specificity are used in this study. The ROC curve, Confusion Matrix, was 
also derived for both datasets. Training validation accuracy and loss are calculated for 100 
epochs. Finally, the convergence rate of the datasets concerning accuracy and epochs is 
also derived to provide more insights into the proposed model.

Performance Analysis of the Proposed Method

Higgs Dataset

Figure 5 shows the ROC Curves for the Higgs dataset. The ROC curve is the reference 
point for evaluating the classifier’s performance. A ROC curve is a graph that displays 
the performance of the classification model at different classes (0 to 9). Figure 5 observes 
that the ROC curve of class 9 (area 1.00) reaches a stable point of 1.0 to achieve superior 
results for the Higgs dataset. Figure 6 displays that training accuracy reaches 0.01820 at 
100 epochs, while validation accuracy achieves 0.01860 at 100 epochs. Figure 7 shows 
the graphical representation of training and validation loss for the Higgs dataset. Training 

Figure 5. ROC characteristics of Higgs dataset

loss values stabilize at 5.020 for 100 epochs, 
while the validation loss stabilizes at 5.009.

Figure 8 shows the early convergence of 
the ANN-PLM method as compared to ANN. 
The epochs required to attain convergence 
is 25 compared to the conventional ANN 
method, which takes 40 epochs with a 
uniform accuracy rate.

Figure 8 also shows the Graphical 
representation of accuracy performance for 
the Higgs dataset. It can be observed that the 
proposed ANN-PTM with SMOTE achieved 
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Figure 7. Epochs vs. training-validation accuracy

Figure 8. Convergence graph of Higgs dataset with ANN and ANN-PLM

Figure 6. Epochs vs. training-validation loss    

Table 1
Performance evaluation of the proposed method for the Higgs dataset

Feature 
selection Classifiers Accuracy 

(%) 
Precision 

(%)
Recall 
(%)

Fmeasure 
(%)

Specificity 
(%)

Without PCC ANN 91.804 91.372 89.264 91.176 89.955
KNN 93.882 94.217 94.153 94.386 96.357
SVM 94.454 95.280 95.969 95.373 96.116

ANN-PLM 97.220 95.166 96.671 96.092 96.104

better accuracy, 0.98, at a cut-off range of 25 epochs, where the accuracy starts to stabilize 
and is maintained the same till it reaches 100 epochs. While considering the ANN process, 
it achieved an accuracy of 0.95 at a cut-off range of 40 epochs. The performance evaluation 
of the proposed method with the Higgs dataset with and without PCC and SMOTE is shown 
in Table 1. The ANN-PLM performs better with and without PCC and SMOTE than the 
ANN, KNN, and SVM. 
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Pokers Dataset

In Figure 9, the ROC curve contains two constraints, (i.e.) True Positive Rate (TPR) and 
False Positive Rate (FPR). In general, a ROC of more than 0.9 is considered outstanding. 
Figure 9 shows that the ROC curve reaches the value of 0.98, which is closer to 1, i.e., it 
produces better classification results for the Poker hand dataset. The ROC curve signifies 
that all ten classes are properly classified within the range of 0.97 and 1.

Figure 10(a) shows the graphical representation of Training and Validation accuracy for 
the Higgs dataset. The training accuracy reaches 0.821 at 100 epochs, while the validation 
accuracy achieves 0.86 at 100. As shown in Figure 10 (b), training loss reaches -1.3 for 
100 epochs, while the validation loss reaches -1.4 at 100 epochs.

Figure 11 shows the graphic representation of accuracy performance for the Poker 
hand dataset. Figure 11 shows that the proposed ANN-PTM achieved better accuracy, 0.92, 

Feature 
selection Classifiers Accuracy 

(%) 
Precision 

(%)
Recall 
(%)

Fmeasure 
(%)

Specificity 
(%)

With PCC ANN 93.110 93.948 94.893 95.057 94.463
KNN 96.170 97.006 95.487 96.533 95.382
SVM 97.597 97.637 96.784 97.362 96.735

ANN-PLM 99.329 99.121 99.004 99.536 99.668
Without 
SMOTE

ANN 90.60 70.40 80.39 78.50 80.39
KNN 93.689 96.456 95.336 91.337 92.896
SVM 92.081 96.189 94.667 95.321 88.542

ANN-PLM 96.227 95.780 96.548 97.168 78.660
With SMOTE ANN 93.80 77.4 87.1 82.0 86.10

KNN 94.657 93.778 96.932 92.436 93.786
SVM 93.180 97.005 95.457 96.879 89.865

ANN-PLM 97.325 96.532 97.278 98.568 80.578

Table 1 (continue)

Figure 9. ROC characteristics for Pokers data
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(a)

Figure 10. (a) Training and validation accuracy; and (b) Training and validation loss
(b)

Figure 11. Convergence graph of Pokers dataset with ANN and ANN-PLM

at a cut-off range of 50 epochs, where the accuracy starts to stabilize and is maintained 
the same until it reaches 100 epochs. While considering the ANN process, it achieved an 
accuracy of 0.89 at a cut-off range of 65 epochs.

Table 2 shows the performance evaluation of the proposed method with the Pokers’ 
dataset with and without PCC and SMOTE. The ANN-PLM performs better with and 
without PCC and SMOTE than the ANN, KNN, and SVM.
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Table 2 
Performance evaluation of the proposed method for the Poker hand dataset

Feature 
selection

Classifiers Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F-measure 
(%)

Specificity 
(%)

Without PCC ANN 91.804 91.372 89.264 91.176 89.955
KNN 93.882 94.217 94.153 94.386 96.357
SVM 94.454 95.280 95.969 95.373 96.116

ANN-PLM 97.220 95.166 96.671 96.092 96.104
With PCC ANN 93.110 93.948 94.893 95.057 94.463

KNN 96.170 97.006 95.487 96.533 95.382
SVM 97.597 97.637 96.784 97.362 96.735

ANN-PLM 99.329 99.121 99.004 99.536 99.668
Without Smote ANN 90.60 70.40 80.39 78.50 80.39

KNN 93.689 96.456 95.336 91.337 92.896
SVM 92.081 96.189 94.667 95.321 88.542

ANN-PLM 96.227 95.780 96.548 97.168 78.660
With Smote ANN 93.80 77.4 87.1 82.0 86.10

KNN 94.657 93.778 96.932 92.436 93.786
SVM 93.180 97.005 95.457 96.879 89.865

ANN-PLM 97.325 96.532 97.278 98.568 80.578

Comparative Analysis of Other Classification Methods Using Higgs and 
Poker Dataset

The existing research on big data classification, such as MF [28], PGS-ISSA [19], Genetic 
Programming, Multilayer feedforward Backpropagation, and AEB [20] are used to compare 
the proposed method. A comparison is made between the Poker hand and the Higgs datasets. 
In that, the PGS-ISSA [19] is analyzed for the Poker hand dataset, and AEB [20] is analyzed 
for the Higgs dataset, while MF [28] is used for both data set comparisons. Tables 3 and 4 
show the comparative analysis of the proposed method with Higgs and Poker hand datasets, 
respectively. Tables 3 and 4 show that the proposed method provides better performance 
than the existing methods. The graphical representation is shown in Figures 12 and 13 for 
the Higgs and Pokers datasets, respectively.

Table 3 
Comparative analysis of the Higgs dataset

Method Accuracy (%)
MF 52
PGS-ISSA 64.72
Cartesian Genetic Programming 
Using Random Sampling

65

Proposed method 96.566

Table 4 
Comparative analysis of Poker hand dataset

Method Accuracy (%)
MF 50
AEB 89.93
Multilayer Feedforward 
Propagation Method

94

Proposed method 98.629
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CONCLUSION

This research proposed a methodology for the classification of huge amounts of data. 
The strategy combines the use of the ANN-PLM technique, which stands for Artificial 
Neural Network with Progressive Learning Method, with feature selection based on the 
Pearson Correlation Coefficient (PCC). The Synthetic Minority Over-sampling Technique 
(SMOTE) is used as a means of data augmentation in the classification procedure to 
mitigate the issues related to class imbalance and overfitting. The PCC feature selection 
approach is utilized to identify the most pertinent features from the feature vector, 
improving the classification performance. The Pearson correlation coefficient (PCC) 
aids in the identification of the most suitable collection of features by evaluating their 
correlation with the target variable. This process enhances the classification model’s 
ability to differentiate across classes. 

In addition, we integrate the notion of discriminative data localization, which entails 
iteratively adjusting the weights of the neural network model by considering both local 
particulars and global structure. This localization methodology allows the network 
to concentrate on significant patterns and characteristics in the data, increasing the 
categorization accuracy. The experimental results demonstrate that the proposed ANN-
PLM strategy exhibits superior performance compared to traditional ANN approaches in 
terms of convergence epochs and other classification performance criteria. The suggested 
method demonstrates significantly improved accuracy on the Higgs and Poker datasets 
when utilizing the PLM technique compared to currently available methods.

In summary, the efficacy of integrating ANN-PLM, PCC-based feature selection, 
SMOTE, and data localization approaches for the classification of huge data is demonstrated 
by our suggested strategy. The findings underscore the effectiveness of the suggested 
approach to precision, convergence speed, and overall classification performance. It 
underscores its potential as a reliable and efficient option for addressing classification 
issues involving large datasets.

Figure 13. Accuracy comparison of Poker datasetFigure 12. Accuracy comparison of Higgs dataset
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In future research, it would be beneficial to evaluate the performance of this method 
on imbalanced data, as the current study only assessed its effectiveness on balanced data. 
This limitation can be further experimented with.
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