
Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 22 August 2023
Accepted: 01 February 2024
Published: 08 August 2024

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.32.5.06

E-mail addresses:
nanditamanohar@gmail.com (Nandita Bangera)
kayarvizhyn.cse@bmsce.ac.in (Kayarvizhy)
* Corresponding author

Learning Discriminative Features Using ANN-based Progressive
Learning Model for Efficient Big Data Classification

Nandita Bangera1,2* and Kayarvizhy1

1B.M.S College of Engineering, Bangalore, Karnataka 560019, India
2RV Institute of Technology and Management, Bangalore 560076, India

ABSTRACT

Progressive techniques encompass iterative and adaptive approaches that incrementally
enhance and optimize data processing by iteratively modifying the analysis process, resulting
in improved efficiency and precision of outcomes. These techniques contain a range of
components, such as data sampling, feature selection, and learning algorithms. This study
proposes the integration of an Artificial Neural Network (ANN) with a Progressive Learning
Model (PLM) to enhance the efficacy of learning from large-scale datasets. The SMOTE
and Pearson Correlation Coefficient (PCC) methods are commonly employed in imbalanced
dataset handling and feature selection. The utilization of progressive weight updating is a
notable strategy for improving performance optimization in neural network models. This
approach involves the incremental modification of the network’s progressive weights
during the training phase rather than relying on gradient values. The proposed method
gradually obtains the localization of discriminative data by incorporating information
from local details into the overall global structure, effectively reducing the training time by
iteratively updating the weights. The model has been examined using two distinct datasets:
the Poker hand and the Higgs. The performance of the suggested method is compared
with that of classification algorithms: Population and Global Search Improved Squirrel
Search Algorithm (PGS-ISSA) and Adaptive E-Bat (AEB). The convergence of Poker’s
is achieved after 50 epochs with ANN-PLM; however, without PLM, it takes 65 epochs.

Similarly, with the Higgs, convergence is
achieved after 25 epochs with PLM and 40
without PLM.

Keywords: Artificial neural network, big data
classification, data imbalance, Pearson correlation
coefficient-based feature selection, progressive
learning model, weight updating

2034 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

INTRODUCTION

Information technologies have achieved extraordinary growth in data. Large amounts
of data from various applications are combined as big data, which has resulted in the
complexity of dealing with big data (Wang et al., 2021) and enhancing convergence. Big
data is either structured or unstructured. The number of data created is represented as
volume (Dubey et al., 2021), data’s creation speed is defined as velocity and structured and
unstructured characteristics are represented as data’s variety (Jain et al., 2022; Kantapalli
& Markapudi, 2023). Big data gathers huge attention in numerous areas, such as electronic
commerce, online social networks, the Internet of Things, bioinformatics, and e-health
because those applications have progressively achieved an enormous amount of raw data
(Brahmane & Krishna, 2021; Hassib et al., 2020; Park et al., 2021; Xing & Bei, 2020).

Big data applications have revolutionized various industries by providing unprecedented
opportunities to extract valuable insights from massive and complex datasets. However,
the volume and complexity of big data often pose challenges in terms of response time,
as processing such large-scale data can be time-consuming and resource-intensive. Many
techniques have emerged as promising approaches to reduce response time and improve
the efficiency of big data applications in addressing these challenges,

Data preparation techniques can reduce processing time in large-scale data applications.
Preprocessing refers to a set of operations that increase the quality and usability of data,
such as data cleansing, transformation, and integration. Preprocessing processes that are
executed efficiently can decrease unnecessary computational overhead, resulting in faster
processing time. Sampling approaches are an alternate method for dealing with the issue
of time limits. Sampling is a statistical strategy in which a representative subset of data
is chosen for examination rather than the complete dataset. It is feasible to achieve large
savings in computing complexity and processing time while receiving important insights
using a smaller sample size. It is also critical to ensure that the sampling approach maintains
the statistical traits and characteristics of the initial dataset. In machine learning, data
classification is an extensive operation that involves understanding the targeted data to
predict the class of unseen data (Banchhor & Srinivasu, 2021). The existence of prominent
redundancy of information in data is required to be noted while examining the openly
accessible tabular big data issues because these redundant features cause an impact on
storage and scalability (Basgall et al., 2020). The training of an efficient learning system
is difficult in data mining when the given class distribution is imbalanced in a training data
set. Moreover, the classification of rare objects is more complex than that of general objects
in most data mining approaches (Abhilasha & Naidu, 2022). The imbalance (Juez-Gil et
al., 2021) decreases the classifier’s generalization abilities and makes it inefficient for
minority classes (Sleeman & Krawczyk, 2021). Therefore, feature selection is combined
with progressive learning to improve big data classification in this work. Feature selection

2035Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

is choosing appropriate features and eliminating redundant features from the dataset.
Moreover, preserving the strong features makes the predictive model highly discriminative,
which enhances performance (Al-Thanoon et al., 2021; BenSaid & Alimi, 2021).

The timely completion of data processing and machine learning model training
is critical for generating efficient and timely results. Numerous approaches have been
proposed in scholarly publications, including feature selection, dimensionality reduction,
ensemble learning, approximation, transfer learning, progressive sampling algorithms,
mini-batch learning, and online learning to overcome this barrier. Using these strategies,
researchers can effectively reduce training time while maintaining acceptable levels of
precision, allowing for faster and more effective application of machine learning models.

The use of iterative and incremental strategies in model construction and data
analysis distinguishes progressive approaches in machine learning. These strategies aim
to gradually improve the accuracy of machine learning models by incorporating new data
and modifying model parameters. Researchers and data scientists can iteratively improve
the precision and efficacy of their models by implementing progressive methodologies.
Progressive techniques have been developed to decrease the temporal complexity of
training time, resulting in faster learning. This advancement is particularly significant
for big data applications. However, it is important to note that these techniques also
have certain drawbacks. Progressive networks present a model framework that enables
transfer through lateral connections to characteristics of previously acquired columns. This
mechanism mitigates the issue of catastrophic forgetting by establishing a distinct neural
network, referred to as a column, for each task being performed. During training, the system
maintains a reservoir of pre-trained models and leverages lateral connections from existing
models to extract valuable characteristics for novel tasks. The network’s last layer, along
with its associated weights, increases in size as each new class is introduced. All these
models necessitate additional overhead in establishing new connections and incorporating
additional columns to retain the acquired data. The trade-off involves an increase in model
complexity, which refers to including a greater number of parameters to be trained for
each extra column. If a new class is introduced, it becomes necessary to retrain the entire
model. The implementation of progressive learning paradigms necessitates a fundamental
alteration in the arrangement of layers and neurons, augmenting the process’s intricacy.

Progressive learning is a concept in artificial neural networks (ANNs) that refers
to incrementally improving a neural network’s performance over time. There are many
progressive learning techniques for ANN and CNN. The techniques differ in the way the
network carries out the learning. Recent literature has focused on developing progressive
learning algorithms that are more efficient, robust, and flexible. Some approaches include
incremental, transfer, lifelong, and meta-learning. Incremental learning methods gradually
learn new tasks while preserving previously learned knowledge. Transfer learning

2036 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

approaches leverage knowledge from previously learned tasks to improve learning on
new tasks. Lifelong learning methods learn continuously over an extended period while
maintaining a growing knowledge base. Meta-learning methods aim to learn how to learn,
facilitating faster and more efficient learning.

This research uses the ANN with PLM to perform big data classification without
changing the overall structure of the ANN and maintaining the process of traditional ANN.
In this proposed system, the incremental learning of weights according to the batches of
data is termed a progressive learning model. This research highlights feature selection,
data imbalance, and progressive learning methods, which collectively reduce the training
time of neural networks.

The contributions of this work are concise as follows―the ANN-PLM approach
is used to localize discriminative data from local details to the global structure, which
is further used to enhance classification by combining the output of the last multiple
stages and progressively updating the probabilities of the weight. PLM helps the neural
network learn from the data effectively and efficiently, leading to better accuracy and
faster training times.

The possible research questions that arise and which have been addressed in the paper are:
•	 RQ1: How does combining a Progressive Learning Model (PLM) with an Artificial

Neural Network (ANN) impact learning effectiveness from extensive datasets?
•	 RQ2: What is the specific impact of progressive weight updating on reducing the

training time of the ANN-PLM model, and how does this compare to traditional
gradient-based weight updating methods?

•	 RQ3: What is the comparative performance of the ANN-PLM model about
traditional classification algorithms like Population and Global Search improved
Squirrel search Algorithm (PGS-ISSA) and Adaptive E-Bat (AEB)?

RELATED WORK

We discuss further the related work on big data classification and progressive learning,
along with its advantages and limitations.

Du et al. (2022) developed a progressive training approach that operated in a zooming-
out manner to perform fine-grained visual classification. This progressive training was
executed in various steps to accomplish the feature learning and acquire the essential
complementary characteristics between various granularities. The Category-Consistent
Block Convolution (CCBC) was proposed, which integrated the operation of block
convolution with the feature Category-Consistency Constraint (CCC). This CCC was used
to overcome the overfitting issue and confirmed that the acquired multi-granularity regions
are expressive and related to classes. The classification of developed progressive training
mainly depends on the block numbers of convolutional layers.

2037Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

Rebuffi et al. (2017) proposed a method for incremental learning that addresses the
problem of catastrophic forgetting. It uses a combination of exemplar-based rehearsal and
feature expansion to learn new tasks while preserving old ones. All these methods have
the overhead of storing the old, learned data.

A newly developed learning method that could help learn new classes while keeping
information from older courses was proposed by Venkatesan and Er (2016). The number
of classes did not bind it. The neural network structure is automatically reconstructed
by enabling new neurons and interconnections when a new class that is not native to the
knowledge obtained so far is encountered, and the parameters are computed so that the
knowledge learned thus far is kept. This approach is suited for real-world applications
where it is necessary to learn online using real-time data and where the number of classes
is frequently uncertain. The consistency and intricacy of the progressive learning method
are studied. The proposed method used the ELM technique, where the output layer structure
changes every time a new class is introduced.

Chatterjee et al. (2017) created an approach for systematically creating a large artificial
neural network employing a progression property in this paper. The systematic design handles
network size selection and parameter regularization. A network’s number of nodes and layers
grows over time to constantly lower a reasonable cost. Each layer is optimized individually,
with optimal parameters learned via convex optimization. Certain weight matrices’ random
occurrences reduced the number of parameters to learn. However, instead of utilizing a back
propagation-based learning strategy, they applied a nonlinear modification at each layer.

In this Progressive method, a deep network is developed unsupervised by PSL, a
progressive stage-wise learning framework for unsupervised visual representation learning
(Li et al., 2021). Early learning stages concentrate on simple tasks, whereas later learning
stages are guided to glean deeper knowledge from more challenging tasks. They have used
the gradient flow concept from one step to the next.

The suggested network architecture prevents prior knowledge from being forgotten
and allows previously learned knowledge to be leveraged through lateral connections to
previously learned classes and their attributes (Siddiqui & Park, 2021). Furthermore, the
suggested technique is scalable and does not necessitate structural changes to the network
trained on the old task; both are critical qualities in embedded systems, but this proposed
method requires a pool of pre-trained models. Progressive Neural Networks (ProgNN) is
a method for incremental learning (Rusu et al., 2016). ProgNN adds new neural networks
to the architecture to solve new tasks while retaining knowledge from previous tasks. Each
new network is trained on the new task and connected to the previous networks, forming
a chain of expertise.

This work is based on a cross-entropy loss to learn the new classes and a distillation
measure to retain the knowledge from the old classes (Castro et al., 2018). It requires extra
memory space to store the old class data.

2038 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Movassagh et al. (2021) suggest a Hierarchical Convolutional Neural Network (HCNN)
for image classification in this paper, which consists of numerous subnetworks utilized to
categorize images progressively. The images with the revised weights are utilized to train the
following sub-networks. If the prediction confidences in a sub-network are above a certain
threshold, the results are output immediately. Otherwise, the following sub-networks must
acquire deeper visual properties sequentially until a reliable image classification result or
the last sub-network is reached. Otherwise, the following sub-networks must acquire deeper
visual properties one after the other until a reliable image classification result or the last
sub-network is reached. The model’s accuracy is relatively high; however, it necessitates
the maintenance of subnetworks, which adds overhead. All the research on progressive
learning depicts the stupendous effort to retain knowledge, creating an overhead in time
and memory.

The remaining portion of the associated study is based on data imbalance and
classification techniques used for ANN. Smote plays an important role in solving the
issues related to data imbalance. Sleeman and Krawczyk (2021) presented Apache
Spark, including a SMOTE, to overcome spatial restrictions in big data analytics. The
developed multi-class sampling approaches, i.e., SMOTE, under- and oversampling,
were augmented with informative sampling and partitioning for SMOTE in Spark nodes.
Therefore, clustering-based data partitioning was used to avoid the issue of the absence
of spatial coherence between the instances from each class because of the random data
splitting between the nodes. The probability of generating erroneous artificial instances was
minimized by using the SMOTE in Spark. For an effective classification, feature selection
was required to be considered for selecting the optimal features.

Ali and Balakrishnan (2021) developed the Population and Global Search Improved
Squirrel Search Algorithm (PGS-ISSA) for feature selection. The developed PGS-ISSA
was used to overcome the issue of local optimum and minimize the convergence rate in
the conventional squirrel search algorithm. The main modification of this PGS-ISSA was
the development of chaos theory to improve the population initialization, which is used to
maximize the search space. The optimal features were chosen according to the minimum
error rate used in the fitness to enhance the classification. The classification’s SVM does
not perform better when processed with larger datasets.

Mujeeb et al. (2021) presented the optimization-based MapReduce framework (MRF)
for dealing with imbalanced data using the deep learning approach in classification. An
adaptive E-Bat (AEB) approach was used to select the feature using the mappers in the
MRF. The developed AEB integrated the Exponential Weighted Moving Average (EWMA)
and the Bat algorithm (BA). The AEB was used to modify the update expression of E-Bat
by creating an adaptive one for handling real-time data. The Deep Belief Network was
used to classify the features according to the chosen ones. The developed AEB required

2039Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

many training data to provide better classification accuracy. In most of the work mentioned
above, the categorization of the generated progressive training was mostly based on the
convolutional layer block counts, and a large amount of training data was needed.

Zhou et al. (2021) presented the region proposal and progressive learning, namely
PRP-Net, for recognizing vegetable disease under a complex background. The attention
proposal subnetwork, APN, was developed to acquire the disease’s key regions from
the background. The developed APN provided highly discriminative data for extracting
the features. Next, these acquired regions were integrated with progressive learning to
support the model in concentrating on fine-grained areas to obtain multiscale features.
The channel attention mechanism was used to estimate the features for classification.
The database’s knowledge information was required to be enhanced to assist the training
process; only then can it process the data from various times and planes. Hassanat et al.
(2021) developed a supervised machine learning Magnetic Force (MF) classifier for big
data classification according to iron-filling attraction to magnetic force. Here, the class was
denoted by certain magnets, and iron filings denoted the unknown data points required to
be categorized in big data classification. The inverse square law was applied to computing
each class’s force over each point in feature space. The developed MF was sensitive to the
information skewed by the class.

MATERIALS AND METHODS

With a progressive learning model, ANN is developed to improve big data classification
in this research. The important processes of the proposed method are (1) data acquisition,
(2) class imbalance processing using SMOTE, (3) feature selection using PCC, and (4)
classification using ANN-PLM. Here, the PCC is used to choose the optimal features
from the feature vector, which leads to improving the classification. The localization of
discriminative data from local details to the global structure is used to perform an effective
classification. Figure 1 shows the block diagram of the proposed method.

Figure 1. Block diagram of the proposed method

Feature
selection

using PCC

Class
imbalance

using SMOTE
DATASET

Progressive updating
of weights

Output
layerInput

layer

FINAL
OUTCOME

Forward
propogation

Backward
propogation

Loss
function

2040 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Dataset Acquisition

In this research, two datasets, the Poker hand dataset and the Higgs dataset, are taken from
the UCI and Kaggle machine repository. The links for the dataset are: https://archive.ics.
uci.edu/ml/datasets/Poker+Hand; and https://archive.ics.uci.edu/ml/datasets/HIGGS.

Few research methodologies have used these datasets, considering their voluminous
structure, which consumes much processing time. The proposed method experimented with
the PLM training method on this dataset to achieve considerably good results.

The Poker hand dataset includes the 1025010 instances and 11 attributes with
categorical and integer features. The nature of this Poker hand dataset is multivariate.

Poker is a 5-card poker hand used in each instance of the dataset, with each card having
two attributes (suite and rank) and the poker-hand label. It is an all-categorical trait and
highly imbalanced dataset, with the first two classes representing 90% of the samples in both
the training and testing sets. In the Higgs dataset, the number of attributes and instances
are 28 and 1100000, respectively. Monté Carlo simulations were used to generate the data.
The first column is the class label (s for the signal for background), followed by the 28
features (21 low-level features, then 7 high-level features The first 21 features (columns
2–22) are kinematic attributes measured by the accelerator’s particle detectors. The final
seven features are functions of the first 21 features. These are high-level features developed
by physicists to aid in distinguishing between the two groups.

Class Imbalance Processing Using SMOTE

The data acquired from the datasets are processed using the synthetic minority over-
sampling technique (SMOTE) approach to avoid issues related to imbalanced data.
SMOTE is a classical oversampling in that the number of samples of the minority class
is maximized in proportion to the majority class. The main principle of SMOTE is to
include new data at random places among the minority data and its neighbors. Initially,
the K-nearest neighbors are investigated using minority-class data. Equation 1 shows the
interpolation expression of SMOTE.

𝐷𝐷𝑖𝑖′ = 𝐷𝐷 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × (𝑁𝑁𝑁𝑁𝑖𝑖 − 𝐷𝐷) 						 [1]

The data sample of minority class samples is denoted as D; the random number
between [0,1] is denoted as rand(0,1); the the nearest neighbors are denoted as NNi, and
the interpolated sample is denoted as. D’i.

Figure 2 shows the imbalance property of both datasets, whereas Figure 3 depicts the
class distribution before and after applying SMOTE in the Higgs Dataset.

The Higgs dataset contained imbalanced data, with the background class representing
almost 90% of data and the signal class around 50% after the application of SMOTE.
Oversampling equally distributed the classes.

2041Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

Feature Selection Using Pearson Correlation Coefficient

Pearson Correlation Coefficient (PCC) is a linear dependence degree measured between
the two random features, i.e., real-valued vectors obtained from the dataset. PCC of two
variables, D’1 and D’2, is generally defined as the ratio between the covariance (COV) of
the two variables and the standard deviation’s product expressed in Equation 2.

𝜌𝜌𝐷𝐷1
′ ,𝐷𝐷2

′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐷𝐷1
′ ,𝐷𝐷2

′)
𝜎𝜎𝐷𝐷1

′ 𝜎𝜎𝐷𝐷2
′

 								 [2]

Where the PCC is denoted as 𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′

𝜎𝜎𝐷𝐷1
′

𝜎𝜎𝐷𝐷2
′

; standard deviations of D’1 and D’2 are denoted as

𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′

𝜎𝜎𝐷𝐷1
′

𝜎𝜎𝐷𝐷2
′

and

𝜌𝜌𝐷𝐷1
′ , 𝐷𝐷2

′

𝜎𝜎𝐷𝐷1
′

𝜎𝜎𝐷𝐷2
′ ; Hence, the relevant features are selected based on derived PCC, and it is processed

further in the ANN with PLM for big data classification. The coefficient correlation value
less than 0.5 was not considered for the training dataset.

Figure 3. Distribution of classes in Higgs dataset: (a)Before; and (b) after applying SMOTE

Figure 2. Depiction of total imbalance distribution of classes in: (a) Poker dataset; and (b) Higgs dataset
before applying SMOTE

(a) (b)

(a) (b)

400000
350000
300000
250000
200000
150000
100000

50000
0

Class

Fr
eq

ue
nc

y

 0 1 2 3 4 5 6 7 8 9

160000
140000
120000
100000

80000
60000
40000
20000

0

Class

Fr
eq

ue
nc

y

 b s

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3 4

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3 4

Class 1
Class 0

Class 1
Class 0

2042 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Classification Using ANN-PLM

PLM Process

The training process, which is performed using PLM, starts from a lower stage and
progressively updates the learning weights of all stages to perform the overall training.
The phenomena considered in progressive learning is the computation of progressive
weight based on cross-entropy loss. This cumulative progressive weight is updated to
the previous layer via backpropagation. In normal backpropagation, the gradient value is
updated as feedback to the previous layer, but ANN-PLM updates the progressive weight
to the previous layer. This progressive weight-based feedback helps to achieve trained
layers with optimal performance in an earlier stage compared to the conventional ANN. The
PLM is required to obtain the discriminative data from local details to overcome the lower
stage’s restriction of representation capacity and receptive field. Here, the representation
capacity denotes the data training capacity of neurons in an ANN layer, and the receptive
field represents the response attainable from the neurons according to the previous stage
output. The ANN steadily discovers discriminative data from local (i.e., layer) details
to the global structure along with the increment of stages, where the global structure is
cumulative of all hidden layers.

In general, the ANN output is the trained weights of the hidden layers, whereas the
ANN-PLM’s output is the weight of the global structure. The changes in the local layer’s
weight create an impact on the adjacent layers. Consequently, the global structure varies
as a result of progressive learning.

Steps in the PLM Process

The flowchart of the proposed system is shown in Figure 4.
The main objective is to develop progressive training to reduce classification loss in

various intermediate stages. Therefore, the convolution block of 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 considers the output
of stage

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 as input and minimizes vector depiction.

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 The classification
module

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 is defined for predicting the probability distribution, whereas

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 has
exponential linear units, batch norm, and two fully connected stages. The probability
distribution

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 is obtained by giving Vl as input to the classification.
The cross-entropy loss LCE expressed in Equation 3 is adopted in PLM for reducing

the distance among the label of ground truth y and distribution of prediction probability yl

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑙𝑙

𝑉𝑉𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑆𝑆𝑙𝑙)

𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠(𝑉𝑉𝑙𝑙)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 						 [3]

Where the number of categories is represented as m; the probability that the input X of
the category i and stage l is represented as 𝑦𝑦𝑙𝑙𝑖𝑖 .The outputs of multiple previous stages are
combined, as shown in Equation 4, to enhance the classification.

2043Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑉𝑉𝐿𝐿−𝑆𝑆+1, … ,𝑉𝑉𝐿𝐿−1,𝑉𝑉𝐿𝐿] 					 [4]

Where the amount of the last stages is represented as S, and it is followed by the
classification, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

, where H is an output. Subsequently, the PLM
is optimized using the cross-entropy loss, expressed in Equation 5. 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

					 [5]

The parameters used in the current estimation are optimized and are updated in the
previous step to help every stage in the PLM operate together in the ANN. The probability
distribution of discovery, such as

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

 and

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

, is obtained in PLM. The outcome of PLM
is derived as Equation 6 when it only uses the

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

 in the discovery.

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

�

							 [6]

The identifications of each stage are complementary and unique; therefore, all outcomes
are integrated to obtain the final prediction, as shown in Equation 7, which is modified
from Equation 6.

 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑙𝑙

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐

 𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � � 𝑦𝑦𝑙𝑙 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐿𝐿

𝑙𝑙=𝐿𝐿−𝑆𝑆+1

� 					 [7]

Figure 4. Flowchart of proposed ANN-PLM method

Prepare the dataset
for training

Data balancing using
SMOTE

Extract relevant
features using PCC

ANN
backpropagation

method of
training

Divide the dataset into
batches

Continue training
process until it

reaches convergence

Prepare the dataset
for training

If a new
class

arrives

YESNO Backpropagate the
progressive weight instead

of gradients

Continue training
process untul it reaches

convergence

2044 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Pseudocode for ANN-PLM with an Experimental Setup

Input: Initialize the hyperparameters of the network such as learning rate =0.01, hidden
layers =10, Number of neurons = 30, Maximum number of epochs =100, batch size =8,
Test ratio = 20%, Train ratio=80%and Activation function = Sigmoid.

• m = number of classes
• 𝐵𝐵𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = convolution block
• 𝑉𝑉𝑙𝑙 = vector
• 𝐿𝐿𝐶𝐶𝐶𝐶 = cross loss entropy
• log = the natural log
• y = ground truth label for i-th sample
• 𝑦𝑦𝑙𝑙 = predicted label for i-th sample
• 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = outputs of multiple previous stages
• 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = predicted labels for the concatenated output
• ∆𝑦𝑦𝑖𝑖 = new class sample
Preprocess the input data for classification.
	 For epochs 1, N do # N defines the number of epochs
	 With probability p with random learning weight
	 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦)

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦)

∆𝑦𝑦𝑖𝑖

𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −�(𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

(𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�)

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −�𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �
𝑚𝑚

𝑖𝑖=1

 for each class of data
𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑙𝑙 ,𝑦𝑦) (𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚

𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 /

 // Calculate loss for each batch of training data
as in Equation 4.

	 Calculate

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 /

 for each class
	 Repeat
		 Calculate

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 /

			

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 /

		 If

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 /

 // Check, new class data arrived.

(𝑦𝑦𝑙𝑙 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑙𝑙𝑖𝑖)𝑚𝑚
𝑖𝑖=1 //Calculate loss for each batch of training data as in Equation 4.

 Calculate 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦) for each class

 Repeat

 Calculate ∆𝑦𝑦𝑖𝑖

 𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖� = −∑ (𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖) × log(𝑦𝑦𝑙𝑙𝑖𝑖 + ∆𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=1

 If (𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,𝑦𝑦𝑖𝑖�=<𝐿𝐿𝐶𝐶𝐶𝐶�𝑦𝑦𝑙𝑙 ,∆𝑦𝑦𝑖𝑖�) // Check, new class data arrived.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦) = −∑ 𝑦𝑦𝑖𝑖 × log�𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �𝑚𝑚
𝑖𝑖=1 / // Update learning

weights and back-propagate the progressive weight
//Find the loss probabilities
Else continue
End if
End For
Evaluate prediction for test data in the trained model
Compute performance measures.
Output: Classified information of big data.

The input data must be pre-processed before classification during the initialized
training phase. The learning weights are randomly initialized, and the training data loss
in every batch is calculated using Equation 4. For several epochs, this process is repeated

2045Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

for every class, and the loss of the training data is evaluated and checked for new class
data. If new class data arrives to calculate the new learning weights, the learning weights
are updated using Equation 6. Else, continue the epochs. The trained model is evaluated
based on the test data prediction, and the performance measure is calculated, resulting in
big data classification.

RESULTS AND DISCUSSION

The design and simulation of the proposed method are performed in Python 3.7. The system
configurations used to run this big data classification are an i5 processor, 16 GB RAM,
and 6 GB GPU. The datasets used to analyze the big data classification using the proposed
method are the Poker hand and the Higgs datasets. Of these datasets, 80% were taken for
training and 20% for testing. The performance metrics such as accuracy, precision, recall,
F-measure, and specificity are used in this study. The ROC curve, Confusion Matrix, was
also derived for both datasets. Training validation accuracy and loss are calculated for 100
epochs. Finally, the convergence rate of the datasets concerning accuracy and epochs is
also derived to provide more insights into the proposed model.

Performance Analysis of the Proposed Method

Higgs Dataset

Figure 5 shows the ROC Curves for the Higgs dataset. The ROC curve is the reference
point for evaluating the classifier’s performance. A ROC curve is a graph that displays
the performance of the classification model at different classes (0 to 9). Figure 5 observes
that the ROC curve of class 9 (area 1.00) reaches a stable point of 1.0 to achieve superior
results for the Higgs dataset. Figure 6 displays that training accuracy reaches 0.01820 at
100 epochs, while validation accuracy achieves 0.01860 at 100 epochs. Figure 7 shows
the graphical representation of training and validation loss for the Higgs dataset. Training

Figure 5. ROC characteristics of Higgs dataset

loss values stabilize at 5.020 for 100 epochs,
while the validation loss stabilizes at 5.009.

Figure 8 shows the early convergence of
the ANN-PLM method as compared to ANN.
The epochs required to attain convergence
is 25 compared to the conventional ANN
method, which takes 40 epochs with a
uniform accuracy rate.

Figure 8 also shows the Graphical
representation of accuracy performance for
the Higgs dataset. It can be observed that the
proposed ANN-PTM with SMOTE achieved

1.0

0.8

0.6

0.4

0.2

0.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

2046 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Figure 7. Epochs vs. training-validation accuracy

Figure 8. Convergence graph of Higgs dataset with ANN and ANN-PLM

Figure 6. Epochs vs. training-validation loss

Table 1
Performance evaluation of the proposed method for the Higgs dataset

Feature
selection Classifiers Accuracy

(%)
Precision

(%)
Recall
(%)

Fmeasure
(%)

Specificity
(%)

Without PCC ANN 91.804 91.372 89.264 91.176 89.955
KNN 93.882 94.217 94.153 94.386 96.357
SVM 94.454 95.280 95.969 95.373 96.116

ANN-PLM 97.220 95.166 96.671 96.092 96.104

better accuracy, 0.98, at a cut-off range of 25 epochs, where the accuracy starts to stabilize
and is maintained the same till it reaches 100 epochs. While considering the ANN process,
it achieved an accuracy of 0.95 at a cut-off range of 40 epochs. The performance evaluation
of the proposed method with the Higgs dataset with and without PCC and SMOTE is shown
in Table 1. The ANN-PLM performs better with and without PCC and SMOTE than the
ANN, KNN, and SVM.

1.0

0.8

0.6

0.4

0.2

0.0

A
cc

ur
ac

y

Epochs
 0 20 40 60 80 100

ANN-PLM

ANN

5.020

5.018

5.016

5.014

5.012

5.010 Validation loss

Training loss

0 20 40 60 80 100

0.01860

0.01855

0.01850

0.01845

0.01840

0.01835

0.01830

0.01825

0.01820

Validation accuracy

Training accuracy

0 20 40 60 80 100

2047Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

Pokers Dataset

In Figure 9, the ROC curve contains two constraints, (i.e.) True Positive Rate (TPR) and
False Positive Rate (FPR). In general, a ROC of more than 0.9 is considered outstanding.
Figure 9 shows that the ROC curve reaches the value of 0.98, which is closer to 1, i.e., it
produces better classification results for the Poker hand dataset. The ROC curve signifies
that all ten classes are properly classified within the range of 0.97 and 1.

Figure 10(a) shows the graphical representation of Training and Validation accuracy for
the Higgs dataset. The training accuracy reaches 0.821 at 100 epochs, while the validation
accuracy achieves 0.86 at 100. As shown in Figure 10 (b), training loss reaches -1.3 for
100 epochs, while the validation loss reaches -1.4 at 100 epochs.

Figure 11 shows the graphic representation of accuracy performance for the Poker
hand dataset. Figure 11 shows that the proposed ANN-PTM achieved better accuracy, 0.92,

Feature
selection Classifiers Accuracy

(%)
Precision

(%)
Recall
(%)

Fmeasure
(%)

Specificity
(%)

With PCC ANN 93.110 93.948 94.893 95.057 94.463
KNN 96.170 97.006 95.487 96.533 95.382
SVM 97.597 97.637 96.784 97.362 96.735

ANN-PLM 99.329 99.121 99.004 99.536 99.668
Without
SMOTE

ANN 90.60 70.40 80.39 78.50 80.39
KNN 93.689 96.456 95.336 91.337 92.896
SVM 92.081 96.189 94.667 95.321 88.542

ANN-PLM 96.227 95.780 96.548 97.168 78.660
With SMOTE ANN 93.80 77.4 87.1 82.0 86.10

KNN 94.657 93.778 96.932 92.436 93.786
SVM 93.180 97.005 95.457 96.879 89.865

ANN-PLM 97.325 96.532 97.278 98.568 80.578

Table 1 (continue)

Figure 9. ROC characteristics for Pokers data

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate
 0.0 0.2 0.4 0.6 0.8 1.0

ROC curve of class 0 (area = 1.00)
ROC curve of class 1 (area = 1.00)
ROC curve of class 2 (area = 1.00)
ROC curve of class 3 (area = 1.00)
ROC curve of class 4 (area = 1.00)
ROC curve of class 5 (area = 0.96)
ROC curve of class 6 (area = 1.00)
ROC curve of class 7 (area = 0.97)
ROC curve of class 8 (area = 1.00)
ROC curve of class 9 (area = 1.00)
micro-average ROC curve (area = 1.00)
macro-average ROC curve (area = 0.99)

2048 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

(a)

Figure 10. (a) Training and validation accuracy; and (b) Training and validation loss
(b)

Figure 11. Convergence graph of Pokers dataset with ANN and ANN-PLM

at a cut-off range of 50 epochs, where the accuracy starts to stabilize and is maintained
the same until it reaches 100 epochs. While considering the ANN process, it achieved an
accuracy of 0.89 at a cut-off range of 65 epochs.

Table 2 shows the performance evaluation of the proposed method with the Pokers’
dataset with and without PCC and SMOTE. The ANN-PLM performs better with and
without PCC and SMOTE than the ANN, KNN, and SVM.

1.0

0.8

0.6

0.4

0.2

0.0

A
cc

ur
ac

y

ANN-PLM

ANN

Epochs
0 20 40 60 80 100

0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2

Validation loss

Training loss

 0 20 40 60 80 100

0.87
0.86
0.85
0.84
0.83
0.82
0.81
0.80

Validation accuracy

Training accuracy

 0 20 40 60 80 100

2049Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

Table 2
Performance evaluation of the proposed method for the Poker hand dataset

Feature
selection

Classifiers Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Specificity
(%)

Without PCC ANN 91.804 91.372 89.264 91.176 89.955
KNN 93.882 94.217 94.153 94.386 96.357
SVM 94.454 95.280 95.969 95.373 96.116

ANN-PLM 97.220 95.166 96.671 96.092 96.104
With PCC ANN 93.110 93.948 94.893 95.057 94.463

KNN 96.170 97.006 95.487 96.533 95.382
SVM 97.597 97.637 96.784 97.362 96.735

ANN-PLM 99.329 99.121 99.004 99.536 99.668
Without Smote ANN 90.60 70.40 80.39 78.50 80.39

KNN 93.689 96.456 95.336 91.337 92.896
SVM 92.081 96.189 94.667 95.321 88.542

ANN-PLM 96.227 95.780 96.548 97.168 78.660
With Smote ANN 93.80 77.4 87.1 82.0 86.10

KNN 94.657 93.778 96.932 92.436 93.786
SVM 93.180 97.005 95.457 96.879 89.865

ANN-PLM 97.325 96.532 97.278 98.568 80.578

Comparative Analysis of Other Classification Methods Using Higgs and
Poker Dataset

The existing research on big data classification, such as MF [28], PGS-ISSA [19], Genetic
Programming, Multilayer feedforward Backpropagation, and AEB [20] are used to compare
the proposed method. A comparison is made between the Poker hand and the Higgs datasets.
In that, the PGS-ISSA [19] is analyzed for the Poker hand dataset, and AEB [20] is analyzed
for the Higgs dataset, while MF [28] is used for both data set comparisons. Tables 3 and 4
show the comparative analysis of the proposed method with Higgs and Poker hand datasets,
respectively. Tables 3 and 4 show that the proposed method provides better performance
than the existing methods. The graphical representation is shown in Figures 12 and 13 for
the Higgs and Pokers datasets, respectively.

Table 3
Comparative analysis of the Higgs dataset

Method Accuracy (%)
MF 52
PGS-ISSA 64.72
Cartesian Genetic Programming
Using Random Sampling

65

Proposed method 96.566

Table 4
Comparative analysis of Poker hand dataset

Method Accuracy (%)
MF 50
AEB 89.93
Multilayer Feedforward
Propagation Method

94

Proposed method 98.629

2050 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

CONCLUSION

This research proposed a methodology for the classification of huge amounts of data.
The strategy combines the use of the ANN-PLM technique, which stands for Artificial
Neural Network with Progressive Learning Method, with feature selection based on the
Pearson Correlation Coefficient (PCC). The Synthetic Minority Over-sampling Technique
(SMOTE) is used as a means of data augmentation in the classification procedure to
mitigate the issues related to class imbalance and overfitting. The PCC feature selection
approach is utilized to identify the most pertinent features from the feature vector,
improving the classification performance. The Pearson correlation coefficient (PCC)
aids in the identification of the most suitable collection of features by evaluating their
correlation with the target variable. This process enhances the classification model’s
ability to differentiate across classes.

In addition, we integrate the notion of discriminative data localization, which entails
iteratively adjusting the weights of the neural network model by considering both local
particulars and global structure. This localization methodology allows the network
to concentrate on significant patterns and characteristics in the data, increasing the
categorization accuracy. The experimental results demonstrate that the proposed ANN-
PLM strategy exhibits superior performance compared to traditional ANN approaches in
terms of convergence epochs and other classification performance criteria. The suggested
method demonstrates significantly improved accuracy on the Higgs and Poker datasets
when utilizing the PLM technique compared to currently available methods.

In summary, the efficacy of integrating ANN-PLM, PCC-based feature selection,
SMOTE, and data localization approaches for the classification of huge data is demonstrated
by our suggested strategy. The findings underscore the effectiveness of the suggested
approach to precision, convergence speed, and overall classification performance. It
underscores its potential as a reliable and efficient option for addressing classification
issues involving large datasets.

Figure 13. Accuracy comparison of Poker datasetFigure 12. Accuracy comparison of Higgs dataset

120

100

80

60

40

20

0
MF PGS-ISSA Cartesian

Genetic
Programming
using random

sampling

Proposed
method

MF PGS-ISSA Multilayer
Feed Forward
Propogation

Method

Proposed
method

120

100

80

60

40

20

0

2051Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

In future research, it would be beneficial to evaluate the performance of this method
on imbalanced data, as the current study only assessed its effectiveness on balanced data.
This limitation can be further experimented with.

ACKNOWLEDGEMENTS

The author extends sincere gratitude to Dr. Kayarvizhy N for invaluable advice and
constructive feedback throughout the development of this manuscript. Her expertise and
guidance were instrumental in shaping the final version of this paper. The author also wishes
to acknowledge the open-access resources and online communities that offered valuable
insights and data, enabling the author to pursue this research independently.

REFERENCES
Abhilasha, A., & Naidul, P. A. (2022). Self-boosted with dynamic semi-supervised clustering method for

imbalanced big data classification. International Journal of Software Innovation, 10(1), 1-24. https://
doi.org/10.1007/s11042-022-12038-4

Ali, I. M. S., & Balakrishnan, M. (2021). Population and global search improved squirrel search algorithm for
feature selection in big data classification. International Journal of Intelligent Engineering & Systems,
14(4), 177-189. https://doi.org/10.22266/ijies2021.0831.17

Al-Thanoon, N. A., Algamal, Z. Y., & Qasim, O. S. (2021). Feature selection based on a crow search algorithm
for big data classification. Chemometrics and Intelligent Laboratory Systems, 212, Article 104288. https://
doi.org/10.1016/j.chemolab.2021.104288

Banchhor, C., & Srinivasu, N. (2021). Analysis of Bayesian optimization algorithms for big data classification
based on map reduce framework. Journal of Big Data, 8(1), Article 81. https://doi.org/10.1186/s40537-
021-00464-4

Basgall, M. J., Naiouf, M., & Fernández, A. (2021). FDR2-BD: A fast data reduction recommendation tool
for tabular big data classification problems. Electronics, 10(15), Article 1757.https://doi.org/10.3390/
electronics10151757

BenSaid, F., & Alimi, A. M. (2021). Online feature selection system for big data classification based on multi-
objective automated negotiation. Pattern Recognition, 110, Article 107629. https://doi.org/10.1016/j.
patcog.2020.107629

Brahmane, A. V., & Krishna, B. C. (2021). Big data classification using deep learning and apache spark
architecture. Neural Computing and Applications, 33(2),15253-15266. https://doi.org/ 10.1007/s00521-
021-06145-w

Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., & Alahari, K. (2018, September 8-14). End-to-end
incremental learning. [Paper presentation]. Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany. https://doi.org/10.48550/arXiv.1807.09536

Chatterjee, S., Javid, A. M., Sadeghi, M., Mitra, P. P., & Skoglund, M. (2017). Progressive learning for systematic
design of large neural networks. arXiv, Article 1710.08177. https://doi.org/10.48550/arXiv.1710.08177

2052 Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Nandita Bangera and Kayarvizhy

Dubey, A. K., Kumar, A., & Agrawal, R. (2021). An efficient ACO-PSO-based framework for data classification
and preprocessing in big data. Evolutionary Intelligence, 14, 909-922. https://doi.org/10.1007/s12065-
020-00477-7

Du, R., Xie, J., Ma, Z., Chang, D., Song, Y. Z., & Guo, J. (2021). Progressive learning of category-consistent
multi-granularity features for fine-grained visual classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(12), 9521-9535. https://doi.org/10.1109/TPAMI.2021.3126668

Hassanat, A. B., Ali, H. N., Tarawneh, A. S., Alrashidi, M., Alghamdi, M., Altarawneh, G. A., & Abbadi, M.
A. (2022). Magnetic force classifier: A novel method for big data classification. IEEE Access, 10,12592-
12606. htttps://doi.org/10.1109/ACCESS.2022.3142888

Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced
big data classification framework using whale optimization and deep neural network. Soft Computing,
24(8), 5573-5592. https://doi.org/10.1007/s00500-019-03901-y

Jain, D. K., Boyapati, P., Venkatesh, J., & Prakash, M. (2022). An intelligent cognitive-inspired computing
with big data analytics framework for sentiment analysis and classification. Information Processing
Management, 59(1), Article 102758. https://doi.org/10. 1016/j.ipm.2021.102758

Juez-Gil, M., Arnaiz-Gonzalez, A., Rodriguez, J. J., Lopez-Nozal, C., & Garcia-Osorio, C. (2021). Approx-
SMOTE: Fast SMOTE for big data on Apache spark. Neurocomputing, 464, 432-437. https://doi.
org/10.1016/j.neucom.2021.08.086

Kantapalli, B., & Markapudi, B. R. (2023). SSPO-DQN spark: Shuffled student psychology optimization based
deep Q network with spark architecture for big data classification. Wireless Networks, 29(1),369-385.
https://doi.org/10.1007/s11276-022-03103-9

Li, Z., Liu, C., Yuille, A., Ni, B., Zhang, W., & Gao, W. (2021, June 19-25). Progressive stage-wise learning
for unsupervised feature representation enhancement. [Paper presentation]. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA. https://doi.org/10.48550/
arXiv.2106.05554

Movassagh, A. A., Alzubi, J. A., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A. A., & Nabipour, N. (2021).
Artificial neural networks training algorithm integrating invasive weed optimization with differential
evolutionary model. Journal of Ambient Intelligence and Humanized Computing, 14, 6017–6025. https://
doi.org/10.1007/s12652-020-02623-6

Mujeeb, S. M., Sam, R. P., & Madhavi, K. (2021). Adaptive exponential bat algorithm and deep learning for
big data classification. Sādhanā, 46(1), Article 15. https://doi.org/10.1007/ s12046-020-01521-z

Park, S. T., Kim, D. Y., & Li, G. (2021). An analysis of environmental big data through the establishment
of emotional classification system model based on machine learning: Focus on multimedia contents
for portal applications. Multimedia Tools and Applications, 80, 34459-34477. https://doi.org/ 10.1007/
s11042-020-08818-5

Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 2001-
2010). IEEE Publishing. https://doi.org/10.48550/arXiv.1611.07725

2053Pertanika J. Sci. & Technol. 32 (5): 2033 - 2053 (2024)

Progressive Learning Model for Efficient Big Data Classification

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu R. &
Hadsell, R. (2016). Progressive neural networks. arXiv, Article 1606.04671. https://doi.org/10.48550/
arXiv.1606.04671

Siddiqui, Z. A., & Park, U. (2021). Progressive convolutional neural network for incremental learning.
Electronics, 10(16), Article 1879. https://doi.org/10.3390/electronics10161879

Sleeman IV, W. C., & Krawczyk B. (2021). Multi-class imbalanced big data classification on spark. Knowledge-
Based Systems, 212, Article 106598. https://doi.org/10.1016/j.knosys. 2020. 106598

Venkatesan, R., & Er, M. J. (2016). A novel progressive learning technique for multi-class classification.
Neurocomputing, 207, 310-321. https://doi.org/10.1016/j.neucom.2016.05.006

Wang, H., Xiao, M., Wu, C., & Zhang, J. (2021). Distributed classification for imbalanced big data in distributed
environments. Wireless Networks, 2021, 1-12. https://doi.org/10.1007/s11276-021-02552-y

Xing, W., & Bei, Y. (2019). Medical health big data classification based on KNN classification algorithm.
IEEE Access, 8, 28808-28819. https://doi.org/10.1109/ACCESS.2019.2955754

Zhou, J., Li, J., Wang, C., Wu, H., Zhao, C., & Wang, Q. (2021). A vegetable disease recognition model for
complex background based on region proposal and progressive learning. Computers and Electronics in
Agriculture, 184, Article 106101. https://doi.org/10.1016/j.compag.2021.106101

